Ensemble 2

배깅(Bagging) - 랜덤 포레스트(Random Forest)

이번 글에서는 앙상블 학습 유형 중 하나인 배깅에 대해 소개한다. 보팅(Voting) 배깅(Bagging) 부스팅(Boosting) Bagging Bagging은 이전 글에서 소개한 Voting과는 달리 같은 알고리즘으로 여러개의 분류기를 만들고, 보팅으로 최종 결정하는 알고리즘이다. 대표적으로는 랜덤 포레스트(Random Forest) 알고리즘이 있다. 랜덤 포레스트는 결정 트리(Dicision Tree)를 기반 알고리즘으로 사용한다. 랜덤 포레스트는 앙상블 알고리즘 중 비교적 빠른 속도를 가지고 있고, 다양한 영역에서 높은 예측 성능을 보인다. Bagging이 Voting과 다른 점은 크게 두 가지이다. 보팅은 여러가지 종류의 Classifier를 사용하지만, 배깅은 한 종류의 Classifier를 ..

Ensemble Learning - Voting(보팅)

Ensemble Learning(앙상블 학습)은 여러 개의 분류기(Classifier)를 생성하고 그 예측을 결합하여 보다 정확학 최종 예측을 도출하는 기법이다. 이미지, 영상, 음성 등의 비정형 데이터의 분류는 딥러닝이 앙상블보다 뛰어난 성능을 보이고 있지만 정형 데이터 분류에 있어서는 앙상블이 더 뛰어난 성능을 나타내고 있다. 대표적인 앙상블 학습 유형은 3가지가 있다. 보팅(Voting) 배깅(Bagging) 부스팅(Boosting) 이번 글에서는 앙상블 학습 유형 중 하나인 보팅(Voting)에 대해 소개한다. Voting Voting은 일반적으로 서로 다른 알고리즘을 가진 분류기를 결합한다. 위의 그림은 Voting 방식을 도식화한 것이다. 동일한 데이터 셋에 대하여 Decision Tree, ..